3.2.8 \(\int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx\) [108]

3.2.8.1 Optimal result
3.2.8.2 Mathematica [C] (verified)
3.2.8.3 Rubi [A] (verified)
3.2.8.4 Maple [B] (verified)
3.2.8.5 Fricas [F]
3.2.8.6 Sympy [F(-1)]
3.2.8.7 Maxima [F]
3.2.8.8 Giac [F]
3.2.8.9 Mupad [F(-1)]

3.2.8.1 Optimal result

Integrand size = 21, antiderivative size = 144 \[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=-\frac {\sin ^3(a+b x)}{20 b d (d \tan (a+b x))^{3/2}}-\frac {3 \sin ^5(a+b x)}{70 b d (d \tan (a+b x))^{3/2}}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}+\frac {3 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sin (a+b x)}{40 b d^2 \sqrt {\sin (2 a+2 b x)} \sqrt {d \tan (a+b x)}} \]

output
-3/40*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*EllipticE(cos(a+1/4*Pi 
+b*x),2^(1/2))*sin(b*x+a)/b/d^2/sin(2*b*x+2*a)^(1/2)/(d*tan(b*x+a))^(1/2)- 
1/20*sin(b*x+a)^3/b/d/(d*tan(b*x+a))^(3/2)-3/70*sin(b*x+a)^5/b/d/(d*tan(b* 
x+a))^(3/2)+1/7*sin(b*x+a)^7/b/d/(d*tan(b*x+a))^(3/2)
 
3.2.8.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.86 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.85 \[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\frac {\sqrt {d \tan (a+b x)} \left (-\sqrt {\sec ^2(a+b x)} (15 \sin (a+b x)+29 \sin (3 (a+b x))+9 \sin (5 (a+b x))-5 \sin (7 (a+b x)))+112 \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\tan ^2(a+b x)\right ) \sec (a+b x) \tan (a+b x)\right )}{2240 b d^3 \sqrt {\sec ^2(a+b x)}} \]

input
Integrate[Sin[a + b*x]^7/(d*Tan[a + b*x])^(5/2),x]
 
output
(Sqrt[d*Tan[a + b*x]]*(-(Sqrt[Sec[a + b*x]^2]*(15*Sin[a + b*x] + 29*Sin[3* 
(a + b*x)] + 9*Sin[5*(a + b*x)] - 5*Sin[7*(a + b*x)])) + 112*Hypergeometri 
c2F1[3/4, 3/2, 7/4, -Tan[a + b*x]^2]*Sec[a + b*x]*Tan[a + b*x]))/(2240*b*d 
^3*Sqrt[Sec[a + b*x]^2])
 
3.2.8.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 3076, 3042, 3078, 3042, 3078, 3042, 3081, 3042, 3052, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (a+b x)^7}{(d \tan (a+b x))^{5/2}}dx\)

\(\Big \downarrow \) 3076

\(\displaystyle \frac {3 \int \frac {\sin ^5(a+b x)}{\sqrt {d \tan (a+b x)}}dx}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {\sin (a+b x)^5}{\sqrt {d \tan (a+b x)}}dx}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3078

\(\displaystyle \frac {3 \left (\frac {7}{10} \int \frac {\sin ^3(a+b x)}{\sqrt {d \tan (a+b x)}}dx-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {7}{10} \int \frac {\sin (a+b x)^3}{\sqrt {d \tan (a+b x)}}dx-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3078

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {1}{2} \int \frac {\sin (a+b x)}{\sqrt {d \tan (a+b x)}}dx-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {1}{2} \int \frac {\sin (a+b x)}{\sqrt {d \tan (a+b x)}}dx-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3081

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {\sqrt {\sin (a+b x)} \int \sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)}dx}{2 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {\sqrt {\sin (a+b x)} \int \sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)}dx}{2 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3052

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {\sin (a+b x) \int \sqrt {\sin (2 a+2 b x)}dx}{2 \sqrt {\sin (2 a+2 b x)} \sqrt {d \tan (a+b x)}}-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {\sin (a+b x) \int \sqrt {\sin (2 a+2 b x)}dx}{2 \sqrt {\sin (2 a+2 b x)} \sqrt {d \tan (a+b x)}}-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {3 \left (\frac {7}{10} \left (\frac {\sin (a+b x) E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{2 b \sqrt {\sin (2 a+2 b x)} \sqrt {d \tan (a+b x)}}-\frac {d \sin ^3(a+b x)}{3 b (d \tan (a+b x))^{3/2}}\right )-\frac {d \sin ^5(a+b x)}{5 b (d \tan (a+b x))^{3/2}}\right )}{14 d^2}+\frac {\sin ^7(a+b x)}{7 b d (d \tan (a+b x))^{3/2}}\)

input
Int[Sin[a + b*x]^7/(d*Tan[a + b*x])^(5/2),x]
 
output
Sin[a + b*x]^7/(7*b*d*(d*Tan[a + b*x])^(3/2)) + (3*(-1/5*(d*Sin[a + b*x]^5 
)/(b*(d*Tan[a + b*x])^(3/2)) + (7*(-1/3*(d*Sin[a + b*x]^3)/(b*(d*Tan[a + b 
*x])^(3/2)) + (EllipticE[a - Pi/4 + b*x, 2]*Sin[a + b*x])/(2*b*Sqrt[Sin[2* 
a + 2*b*x]]*Sqrt[d*Tan[a + b*x]])))/10))/(14*d^2)
 

3.2.8.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3076
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Sin[e + f*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*m)) 
, x] - Simp[a^2*((n + 1)/(b^2*m))   Int[(a*Sin[e + f*x])^(m - 2)*(b*Tan[e + 
 f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && GtQ[m, 1] 
 && IntegersQ[2*m, 2*n]
 

rule 3078
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_.), x_Symbol] :> Simp[(-b)*(a*Sin[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/( 
f*m)), x] + Simp[a^2*((m + n - 1)/m)   Int[(a*Sin[e + f*x])^(m - 2)*(b*Tan[ 
e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1 
] && EqQ[n, 1/2])) && IntegersQ[2*m, 2*n]
 

rule 3081
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[Cos[e + f*x]^n*((b*Tan[e + f*x])^n/(a*Sin[e + f*x])^ 
n)   Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b, e, 
 f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(- 
1)]) || IntegersQ[m - 1/2, n - 1/2])
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
3.2.8.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(443\) vs. \(2(151)=302\).

Time = 1.46 (sec) , antiderivative size = 444, normalized size of antiderivative = 3.08

method result size
default \(\frac {\sec \left (b x +a \right ) \left (\csc ^{2}\left (b x +a \right )\right ) \left (-1+\cos \left (b x +a \right )\right ) \left (\cos \left (b x +a \right )+1\right ) \left (40 \sqrt {2}\, \left (\cos ^{8}\left (b x +a \right )\right )-108 \sqrt {2}\, \left (\cos ^{6}\left (b x +a \right )\right )+82 \sqrt {2}\, \left (\cos ^{4}\left (b x +a \right )\right )-21 \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \sqrt {-\csc \left (b x +a \right )+1+\cot \left (b x +a \right )}\, \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, F\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )+42 \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {-\csc \left (b x +a \right )+1+\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, E\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )-21 \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \sqrt {-\csc \left (b x +a \right )+1+\cot \left (b x +a \right )}\, \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, F\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )+42 \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {-\csc \left (b x +a \right )+1+\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, E\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )+7 \left (\cos ^{2}\left (b x +a \right )\right ) \sqrt {2}-21 \sqrt {2}\, \cos \left (b x +a \right )\right ) \sqrt {2}}{560 b \sqrt {d \tan \left (b x +a \right )}\, d^{2}}\) \(444\)

input
int(sin(b*x+a)^7/(d*tan(b*x+a))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/560/b*sec(b*x+a)*csc(b*x+a)^2*(-1+cos(b*x+a))*(cos(b*x+a)+1)*(40*2^(1/2) 
*cos(b*x+a)^8-108*2^(1/2)*cos(b*x+a)^6+82*2^(1/2)*cos(b*x+a)^4-21*(cot(b*x 
+a)-csc(b*x+a))^(1/2)*(-csc(b*x+a)+1+cot(b*x+a))^(1/2)*(1+csc(b*x+a)-cot(b 
*x+a))^(1/2)*EllipticF((1+csc(b*x+a)-cot(b*x+a))^(1/2),1/2*2^(1/2))*cos(b* 
x+a)+42*(1+csc(b*x+a)-cot(b*x+a))^(1/2)*(-csc(b*x+a)+1+cot(b*x+a))^(1/2)*( 
cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticE((1+csc(b*x+a)-cot(b*x+a))^(1/2),1/2 
*2^(1/2))*cos(b*x+a)-21*(cot(b*x+a)-csc(b*x+a))^(1/2)*(-csc(b*x+a)+1+cot(b 
*x+a))^(1/2)*(1+csc(b*x+a)-cot(b*x+a))^(1/2)*EllipticF((1+csc(b*x+a)-cot(b 
*x+a))^(1/2),1/2*2^(1/2))+42*(1+csc(b*x+a)-cot(b*x+a))^(1/2)*(-csc(b*x+a)+ 
1+cot(b*x+a))^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticE((1+csc(b*x+a)- 
cot(b*x+a))^(1/2),1/2*2^(1/2))+7*cos(b*x+a)^2*2^(1/2)-21*2^(1/2)*cos(b*x+a 
))/(d*tan(b*x+a))^(1/2)/d^2*2^(1/2)
 
3.2.8.5 Fricas [F]

\[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int { \frac {\sin \left (b x + a\right )^{7}}{\left (d \tan \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(b*x+a)^7/(d*tan(b*x+a))^(5/2),x, algorithm="fricas")
 
output
integral(-(cos(b*x + a)^6 - 3*cos(b*x + a)^4 + 3*cos(b*x + a)^2 - 1)*sqrt( 
d*tan(b*x + a))*sin(b*x + a)/(d^3*tan(b*x + a)^3), x)
 
3.2.8.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sin(b*x+a)**7/(d*tan(b*x+a))**(5/2),x)
 
output
Timed out
 
3.2.8.7 Maxima [F]

\[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int { \frac {\sin \left (b x + a\right )^{7}}{\left (d \tan \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(b*x+a)^7/(d*tan(b*x+a))^(5/2),x, algorithm="maxima")
 
output
integrate(sin(b*x + a)^7/(d*tan(b*x + a))^(5/2), x)
 
3.2.8.8 Giac [F]

\[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int { \frac {\sin \left (b x + a\right )^{7}}{\left (d \tan \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(b*x+a)^7/(d*tan(b*x+a))^(5/2),x, algorithm="giac")
 
output
integrate(sin(b*x + a)^7/(d*tan(b*x + a))^(5/2), x)
 
3.2.8.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^7(a+b x)}{(d \tan (a+b x))^{5/2}} \, dx=\int \frac {{\sin \left (a+b\,x\right )}^7}{{\left (d\,\mathrm {tan}\left (a+b\,x\right )\right )}^{5/2}} \,d x \]

input
int(sin(a + b*x)^7/(d*tan(a + b*x))^(5/2),x)
 
output
int(sin(a + b*x)^7/(d*tan(a + b*x))^(5/2), x)